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ABSTRACT: First, the kinetics of the reaction of a polyoxypropylene (POP) diamine and the
diglycidyl ether of Bisphenol A (DGEBA), taking account of the induced unequal reactivity
(substitution effect) of the hydrogen atoms of the amine groups, are analyzed. It is shown that a
larger reduction in the reactivity of the second hydrogen atom of an amine group to react leads to
a higher proportion of semireacted amine groups at a given overall extent of reaction. Second, the
statistics of gelation of the diamine−epoxy polymerization in the absence of intramolecular reaction but accounting for the
aforementioned unequal reactivity are investigated. The description is cast in terms of an RA4 + R′B2 polymerization, where A
represents a hydrogen atom of an amine group and B represents an epoxide group. It is shown that the induced unequal reactivity
has only a very small effect on the gel point. For example, a decrease by a factor of 10 in the reactivity of the second hydrogen
atom of an amine group to react leads to an increase in an extent of reaction at the gel point (pc) of only 0.022 over the Flory−
Stockmayer value of 0.577. Third, a theory for predicting the gel point in RA4 + R′B2 type polymerizations accounting for
intramolecular reaction is developed. The theory is an extension of Ahmed−Rolfes−Stepto (ARS) theory to include more detail
of the molecular structures around pairs of reacting groups. The very small effects of induced unequal reactivity on the gel point
mean that the probabilities of intramolecular reaction can be calculated assuming the equal reactivity of like reactive groups. ARS
theory leads to a quadratic relationship between pc and the ring-forming parameter, λ0. The present, more comprehensive theory
does not lead to an analytical relationship between pc and λ0, but numerical evaluation of pc as a function of λ0 shows that many
more ring structures are accounted for than by ARS theory, even at small values of λ0. The present theory is applied to the
experimental data in the following paper.

1. INTRODUCTION

This study, which is in two parts, is concerned with the
measurement and interpretation of gel points in the polymer-
ization of polyoxypropylene (POP) diamines and the diglycidyl
ether of Bisphenol A (DGEBA). The first part, the present paper,
describes the reaction scheme, the gel point condition and the
results of calculations of the effects of unequal reactivity and ring
formation on the gel point. In the second part, the following
paper, the experimental determinations of conversion versus
time curves and gel points through infrared and rheological
measurements are described. The results are interpreted in terms
of the theoretical expressions derived in the present paper and are
compared with previously published results.
The type of polymerization considered is an RAfa + R′Bfb

one, where fa and f b are the functionalities of the reactants
bearing reactive A groups and B groups. In the present
context, RAfa is a primary diamine and A is used to denote the
hydrogen atom of an amine group. R′Bfb is a diepoxide, with B
denoting an epoxy group. Thus, an RA4 + R′B2 polymerization
is considered.
At a critical extent of reaction, the size of the largest molecule

formed spans the reaction volume and this extent of reaction is
termed the gel point. Classical theories of gelation consider
idealized reactions, which are defined based on two assumptions:
(1) all like groups are equally reactive and (2) there is no

intramolecular reaction.1 Many authors have considered such
reactions,1−9 although in many real systems, the assumptions are
not valid. Further, when more realistic models are used, they
often remove only one of the assumptions. The present paper, in
contrast, treats the gel points of an RA4 + R′B2 epoxy−amine
system accounting for both unequal reactivity and intramolecular
reaction. The unequal reactivity considered is the induced
unequal reactivity9 of hydrogen atoms on amine groups. Induced
unequal reactivity is also known as the substitution effect4,10−12

and may be contrasted with intrinsic unequal reactivity,9 such as
often occurs, for example, when primary and secondary hydroxyl
groups react competitively with another type of group.
Intramolecular reaction leads to ring structures and delays the

gel point.9,13−24 Further, ring structures bring about lower
molecular weights at a given extent of reaction in the pregel
regime than would be expected from theories using idealized
reactions.9,25 They also preclude the formation of a perfect
network and, hence, influence the elastic and viscoelastic
properties of the final network.9,26−33 It is important, therefore,
to describe quantitatively the ring structures that form.
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2. REACTION SCHEME

The scheme considered is for the reaction between a POP
diamine, with four reactive hydrogen atoms, and DGEBA, having
two epoxy groups. A hydrogen atom of a primary amine and
an epoxy group react with a rate constant kH1 as shown
schematically in reaction 1 of Figure 1; where hydrogen atoms

are categorized as being in states H1, H2, and HR. Hydrogen
atoms that belong to unreacted, primary amine groups are
defined as H1, the unreacted hydrogen atoms that belong to
semireacted amine groups are defined as H2, and reacted
hydrogen atoms are defined as HR. In reaction 1, with rate con-
stant kH1, two H1 atoms are lost, and one H2 atom and one HR
atom are formed. A hydrogen atom H2 on a secondary amine
group and an epoxy group react to form a tertiary amine group as
shown in reaction 2, with rate constant kH2. In reaction 2, one H2
atom is lost and one HR atom is formed.
The rates of change of the concentrations of H1, H2, and HR

are given by the following equations:

= − × ×c k c cd /dt 2H1 H1 H1 EP (1)

= × × − × ×c k c c k c cd /dtH2 H1 H1 EP H2 H2 EP (2)

= × × + × ×c k c c k c cd /dtHR H1 H1 EP H2 H2 EP (3)

Here cH1, cH2, cHR, and cEP are concentrations of H1, H2, HR
atoms and epoxy groups, respectively. Let the concentrations
of H1 and epoxy groups before the reaction (i.e., at t = 0) be
c0H1 and c0EP, then pHR, the extent of reaction of the hydrogen
atoms, is

=p
c
cHR

HR
0

H1 (4)

It should be noted that the value of pHR is directly measurable
using FT-IR spectroscopy, as described in the following paper.
The fractional concentrations of H1 and H2 atoms and reacted
epoxy groups can be defined as; pH1 = (cH1/ c

0
H1), pH2 = (cH2/

c0H1), pEP = (cEPR/ c
0
EP), where cEPR = c0EP − cEP. The reactive-

group ratio for the reaction mixture, rH1, can be written as, rH1 =
(c0H1/ c

0
EP). Further, at t = 0, cH1 = c

0
H1, cH2 = 0 and cHR = 0. Also,

cHR = c0H1 − cH1 − cH2 and cHR = cEPR during the course of
reaction. Solving the differential eqs 1−3 and elimination of t give
pH2 and pHR in terms of pH1.

ρ
=

−
−ρp p p

1
2

( )H2 H1
( /2)

H1 (5)

ρ
ρ ρ

= − −
−

−
−

ρp p p1
1
2

1
2HR H1 H1

( /2)

(6)

where

ρ = k k/H2 H1 (7)

is the rate-constant ratio. Reactions 1 and 2 occur with equal
probabilities for a random sample of the epoxy group as ρ = 1.
The results of calculations of pH2 and pHR in terms of pH1 are

displayed in Figure 2 as plots of pH1 vs pHR and pH2 vs pHR for

different values of ρ. The increase in pHR from 0 to 1 describes the
progress of a polymerization to completion. After H2 atoms are
produced by reaction 1, their consumption follows reaction 2,
resulting in the maxima in the pH2 vs pHR curves. The curves
clearly show dependences on ρ. The maximum in the pH2 vs pHR
curve for ρ = 1 occurs at pHR = 0.5 and it shifts to higher values of
pHR as ρ decreases. Overall, as ρ is decreased at a given pHR, pH1
decreases and pH2 increases, showing that the secondary amine
groups that are formed by reaction 1 react more slowly.

3. STATES OF THE DIAMINE UNIT
During a polymerization, six states of the diamine unit can be
defined, as shown schematically in Figure 3. The classification of

the diamine unit shown here is similar to that of Dusěk, et al.14

However, its use to define the gel point is different. The gel point
in the study of Dusěk et al. is defined as the point of divergence of
the mass-average molar mass. Here, the gel point is derived in
terms of the probabilities of continuing paths, as shown in the
following sections. Second, ring formation was not considered by
Dusěk et al., whereas it is included in the present work.
With the progress of a reaction, the relative concentrations of

the individual states change. State 1 is not included in growing
chains. State 2 occurs at the ends of growing chains. States 3−6

Figure 1. Schematic representation of the reaction between amino and
epoxy groups in the polymerization of a POP diamine and DGEBA. The
H atoms of amino groups are categorized as H1, H2, and HR as
described in the text.

Figure 2. pH1 vs pHR and pH2 vs pHR at different values of ρ (=kH2/kH1).

Figure 3. Classification of the states of reaction of a POP diamine unit
during a polymerization.
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form constituent parts of polymer chains and branching takes
place at states 5 and 6. If the probabilities (mole fractions) of the
six states are written as Xi, i = 1, 2, ..., 6, they can be expressed as
functions of pHR, which is experimentally measurable.
Let XU, XS, and XR, respectively, be the mole fractions of

unreacted, semireacted and fully reacted amino groups, withXU +
XS + XR = 1. State 1 consists of two unreacted amine groups.
Hence, X1 = XU

2. State 2 consists of a semireacted amine group
and an unreacted amine group and X2 = 2XUXS. State 3 consists
of a fully reacted amine group and an unreacted amine group, so
that X3 = 2XUXR. State 4 contains two semireacted groups and X4
= XS

2. Similarly, X5 = 2XSXR and X6 = XR
2. Furthermore,∑i=1

6 = 1.
The Xi can now be calculated using the fractional

concentrations of H1, H2 and HR atoms. State 1 contains four
H1 atoms, and states 2 and 3 each contain two H1 atoms. Thus,
pH1 = (4X1 + 2X2 + 2X3)/4. Similarly, for H2 and HR atoms, pH2
= (X2 + 2X4 + X5)/4 and pHR = (X2 + 2X3 + 2X4 + 3X5 + 4X6)/4.
Rearrangement of these equations gives the following
expressions for the Xi.

=X p1 H1
2

(8)

=X p p42 H1 H2 (9)

= −X p p p2 ( )3 H1 HR H2 (10)

=X p44 H2
2

(11)

= −X p p p4 ( )5 H2 HR H2 (12)

= −X p p( )6 HR H2
2

(13)

From the results shown in Figure 2, pH1 and pH2 can be evaluated
from pHR. Hence, bymeans of eqs 8−13, theXi can be found from
measured values of pHR. Equations 8−13 can also be derived
directly by assigning the probabilities pH1, 2pH2, and pHR − pH2,
respectively, to unreacted, semireacted and fully reacted amine
groups (see eqs 24−26, later).

4. GEL POINT IN THE ABSENCE OF INTRAMOLECULAR
REACTION

To define the gel point statistically, the probability of path
continuation is introduced.1,9,18,22 It is the probability that a
randomly chosen reactive group has at least one path emanating
from it that continues to infinity. This probability increases as a
reaction proceeds and becomes equal to unity at the gel point.
Here, the derivation of the expression for the gel point in terms
of extent of reaction (pHR) is written with reference to an RA4 +
R′B2 polymerization, where A signifies a hydrogen atom and B an
epoxy group.
Assume f irst that the randomly chosen group is an A group,

denoted A1 in Figure 4. The number of continuing paths (γa),

given that an A group has been chosen, is the number of paths
between the statistically equivalent points A1 and A1′, with

γ = + + + +⎜ ⎟⎛
⎝

⎞
⎠X X X X X p

3
4

3
2

3
2

9
4

3a 2 3 4 5 6 b (14)

pb is the extent of reaction of B groups.
The terms in eq 14 are easily derived by reference to Figure 3.

X2 to X6 are the probabilities that RA4 units in states 2 to 6,
respectively, are chosen. If a unit in state 2 is chosen then the
probability that an unreacted hydrogen atom (HU) is chosen for
A1 is equal to 3/4 giving 1 path to a B−B unit. Following similar
arguments, the origin of the numerical coefficients in eq 14,
representing numbers of paths, may be summarized as follows:

X3: probability =1/2 that a HU atom is chosen for A1, giving 2 paths to
B−B units, and

probability = 1/2 that a HR atom is chosen for A1, giving 1 path to a
B−B unit.

therefore, total number of paths = 1/2 × 2 + 1/2 × 1 = 3/2
X4: same as X3

X5: probability = 1/4 that a HU atom is chosen for A1, giving 3 paths to
B−B units, and

probability = 3/4 that a HR atom is chosen for A1, giving 2 paths to
B−B units.

therefore, total number of paths = 1/4 × 3 + 3/4 × 2 = 9/4
X6: probability =1 that a HR atom is chosen for A1, giving 3 paths to B−B

units.

To compare eq 14 with the conventional way,1,9 valid when
ρ = 1, of defining γa in terms of the fractions of unreacted and
reacted A groups, pU and pR, respectively, one has:

=X p1 U
4

(15)

=X p p42 U
3

R (16)

=X p p23 U
2

R
2

(17)

=X p p44 U
2

R
2

(18)

=X p p45 U R
3

(19)

=X p6 R
4

(20)

Substituting these relationships in eq 14 gives

γ = + + +

+

⎜

⎟

⎛
⎝

⎞
⎠

p p p p p p p p

p p

3
4

4
3
2

2
3
2

4
9
4

4

3

a U
3

R U
2

R
2

U
2

R
2

U R
3

R
4

b (21)

= + + +p p p p p p p p3 ( 3 3 )R U
3

U
2

R U R
2

R
3

b

= p p3 R b (22)

corresponding to γa =( fa − 1)papb for an RAfa + R′B2
polymerization, with

≡ − ≡p p p pand (1 )a R a U (23)

Comparison of eqs 15−20 with eqs 8−13 shows that, when
ρ = 1

=p pH1 U
2

(24)

= ×p p pH2 U R (25)

and

− = =p p p pHR H2 R
2

a
2

(26)

Furthermore, eqs 24, 25 and 26 show that

Figure 4. Illustrating a path between statistically equivalent points, A1

and A1′. A........ denotes that an A group can be reacted or unreacted.
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+ = + = = −p p p p p p p( ) (1 )H1 H2 U U R U a (27)

and

= + = + = =p p p p p p p p p( )HR R
2

U R R R U R a (28)

Equations 24−26 also show that pH1, 2pH2, and pHR− pH2 are the
probabilities of unreacted, semireacted and fully reacted amine
groups occurring, with

+ + = + + −

= + +

=

X X X p p p p

p p p

2

1

U S R H1 H2 HR H2

H1 H2 HR

In addition, eq 14maybewritten in termsofpH1, pH2, and pHRwith

γ = + − +

+ − + −

p p p p p p

p p p p p p

(3 3 ( ) 6

9 ( ) 3( ) )

a H1 H2 H1 HR H2 H2
2

H2 HR H2 HR H2
2

b (29)

Second, assume that the randomly chosen group is a B group,
denoted B1 in Figure 5. The number of continuing paths (γb) is

the number of paths between the statistically equivalent points B1

and B1′ can be written

γ = × ′p number of paths from B to Bb b
1 1

(30)

To evaluate the number of paths in eq 30, one needs to
consider the fractions of reacted groups on the various states of a
diamine unit, as defined in Figure 3. Summing the fractions of
reacted groups gives the average number of reacted H groups on
a diamine unit, namely,

+ + + +

= + + + +

=

X X X X X

p p p p p p p p p

p

2 2 3 4

4 4 8 12 4

4

2 3 4 5 6

U
3

R U
2

R
2

U
2

R
2

U R
3

R
4

R (31)

Hence, the fractions of reacted groups that are on the various
states and the numbers of continuing paths from those states
are as defined in Table 1. Finally, from eq 30 and Table 1, the
number of continuing paths from B1 to B1′ is

γ = + + +p p p p p p p p( 2 6 3 )b b U
2

R U
2

R U R
2

R
2

(32)

i.e.

γ = p p3b b R (33)

The expression forγb may be recast in terms of pH1, pH2 and pHR
by first rewriting eq 32 as

γ = + + +p
p

p p p p p p p
1

( 2 6 3 )b b
R

U
2

R
2

U
2

R
2

U U
3

R
4

and then using eqs 24 to 28 to give

γ = − + + −

+ −

p
p

p p p p p p p

p p

1
( ( ) 2 6 ( )

3( ) )

b b
HR

H1 HR H2 H2
2

H2 HR H2

HR H2
2

(34)

Finally, adding the contributions from γa and γb, the number of
continuing paths from a randomly chosen group to a statistically
equivalent point is

γ γ γ= +X Xa a b b (35)

where

=
+

=
+

X
N

N N
X

N
N N( )

and
( )a

a0

a0 b0
b

b0

a0 b0 (36)

are the mole fractions of A and B groups in the reaction mixture,
with Na0 and Nb0 the initial numbers of A and B groups,
respectively, and

=X X r/a b a (37)

is the reactive group ratio of A groups relative to B groups. The
full expression for γ in terms of pH1, pH2, and pHR is

γ = + − +

+ − + −

+ − +

+ − + −

X p p p p p p p

p p p p p

X p p p p p p

p p p p p

3 ( ( ) 2

3 ( ) ( ) )

( / )( ( ) 2

6 ( ) 3( ) )

a b H1 H2 H1 HR H2 H2
2

H2 HR H2 HR H2
2

b b HR H1 HR H2 H2
2

H2 HR H2 HR H2
2

(38)

γ increases from zero at the start of a polymerization to become
equal to unity at the gel point.
The results of calculations using eq 38 at ra = 1, so that

Xa = Xb =
1/2 , are shown in Figure 6, with γ plotted as a function

of pHR. The values of ρ used for the calculations were 1.5, 1, 0.5,
0.1. It can be seen that γ increases from 0 to 3 as pHR increases
from 0 to 1. The result that γ = 3 as pHR = 1 comes from the fact
that, when all the A groups on the RA4 units are reacted, those
units are all in state 6, which has three continuing paths from any
randomly chosen group.
The curves of γ vs pHR depend slightly on ρ, as can be seen in

the inset figure. Focusing on the gel point, pc, the value of pHR at
γ = 1 is pHR = pc = 0.577 for ρ = 1, consistent with Flory−
Stockmayer theory.1,9 In addition, as ρ decreases, pc increases,
corresponding to a larger delay of the gel point. A smaller value
of ρ means less of reaction 2 of Figure 1, resulting in the
formation of states 3, 5, and 6 of the diamine unit being delayed
(see Figure 3). States 5 and 6 bring about the bifurcation that
leads to gelation. Hence, it can be considered that the delay of gel
point caused by a decrease in ρ is due to the delay in the forma-
tion of states 5 and 6. As ρ≪1, the formation of states 5 and 6 is

Figure 5. Illustrating a path between statistically equivalent points, B1

and B1′. A...... and B........ denote that an A group and a B group can be
reacted or unreacted.

Table 1. Fractions of Reacted Groups on the Various States of
a Diamine Unit and the Numbers of Continuing Paths from
Those States

state fraction of reacted groups number of continuing paths

2
=

X
p

p
4

2

R
U

3 0

3
=

X
p

p p
2
4

3

R
U

2
R

1

4
=

X
p

p p
2
4

24

R
U

2
R

1

5
=

X
p

p p
3
4

35

R
U R

2 2

6
=

X
p

p
4
4

6

R
R

3 3
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significantly delayed, X5 and X6 are nearly equal to zero up to
pHR = 0.5, whereas they increase very rapidly after pHR = 0.5. In
consequence, the increase in pc is not so large even for the small
value of ρ. For ρ = 0.1, pc = 0.599, an increase of only 0.022 over
the Flory−Stockmayer value.

5. RING−FORMING PARAMETERS9,18,22

In an RAfa + R′Bfb type polymerization, competition always
occurs between intermolecular and intramolecular reaction. To
describe the competition, let ca,int be the (internal) concentration
of A groups from the same molecule around a B group about to
react and let ca,ext be the (external) concentration of A groups
from other molecules. Then, a ring−forming parameter, λa, can
be defined as

λ = +c c c/( )a a,int a,ext a,int (39)

Correspondingly, cb,int, and cb,ext can be defined as the internal and
external concentrations of B groups around an A group about to
react, leading to the ring-forming parameter

λ = +c c c/( )b b,int b,ext b,int (40)

The size of ring structure is denoted by j, as illustrated in
Figure 7 with reference to an RA4 + R′B2 polymerization. The

group B1 can form ring structures of sizes j = 1, 2, 3, ..., with
unreacted A groups on the same molecule. j = 1 denotes the
smallest ring structure, comprising one R′B2 unit and two arms of
an RA4 unit. The second smallest ring structure, denoted by j = 2,
consists of two R′B2 units and four arms from two RA4 units.
Accordingly, ca,int, the total concentration of A groups on the
same molecule as a B group about to react, can be written

∑=
=

∞

c c
j

ja,int
1

a,int ,
(41)

ca,int, j, j = 1, 2, ..., is the concentration of the A groups available to
form ring structures of sizes jwith the reacting B group. Likewise,
cb,int can be used to denote the total concentration of B groups

available to form ring structures of all sizes with a reacting A
group on the same molecule, with

∑=
=

∞

c c
j

jb,int
1

b,int ,
(42)

When evaluating the contribution to the terms ca,int, j and cb,int, j,
from each pair of A and B groups that could react together, it is
necessary to consider the probability that the end-to-end
distance of the chain connecting them is equal to zero.34 It is
assumed that the end-to-end distance distribution, i.e., the
probability density P(r1) of an end-to-end vector equal to r1, is a
Gaussian distribution, with

πν ν
= −⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟rP

b
r
b

( )
3

2
exp

3
21 2

3/2
1
2

2
(43)

and

=r vb1
2 2

(44)

b is known as the effective bond length of the chain of ν bonds
able to form the smallest ring structure (j = 1). P(r1) at r1 = 0,
namely, P(0), is the concentration of one chain end around
the other chain end. Dividing P(0) by Nav, Avogadro’s number,
gives the molar concentration of coincident chain ends that can
form the smallest ring structure. This concentration is denoted
Pab, with

π
= =

⎛
⎝⎜

⎞
⎠⎟P

P
N N r

0( ) 1 3
2ab

Av Av 1
2

3/2

(45)

ν and b can, in principle, be calculated from the molar masses
and chain structures of the reactants. Pab is the molar con-
centration of A or B groups around a B or A group, respectively,
that can form the smallest ring structure. Equation 45 neglects
any effects of the branch units on the statistics governing
the mutual separations of pairs of end groups in branched
chains. Regarding this point, it is necessary to develop more
realistic statistics, since ring structures can form through the
branch units.
If there is only one opportunity to form a ring structure of each

size, the sum over all sizes in eq 41 can be written

∑ ∑
π

= = =
=

∞

=

∞⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟c

N r
P

j
P

1 3

2

1
2.61

j Av j
ab

j
a,int

1
2

3/2

1

3/2

ab

(46)

where <rj
2> = j<r1

2> and Σ1jj‑3/2 = ϕ(1,3/2) = 2.61 is a Truesdell
function.35 Similarly,

=c P2.61b,int ab (47)

can be derived from eq 42, assuming only one opportunity to
form a ring structure of each size.
Alternative ring-forming parameters to those introduced in

eqs 39 and 40 are

λ λ= =P c P c/ and /a0 ab a0 b0 ab b0 (48)

where ca0 and cb0 are the initial concentrations of A and B groups
before reaction occurs. λa0 and λb0 have an advantage over λa and
λb in that they can, in principle, be calculated directly from the
molar masses and chain structures of the reactants and the initial
concentrations of reactive groups, independent of the complex
molecular structures forming during a polymerization.

Figure 6.Number of continuing paths from a randomly chosen group, γ
as a function of pHR for different values of ρ. The inset figure shows the
delay in gel point as ρ decreases, that is, the increase in pHR at γ = 1.

Figure 7. Illustrating sizes of ring structures that can form in an RA4 +
R′B2 polymerization.
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6. GEL POINT ACCOUNTING FOR INTRAMOLECULAR
REACTION

The derivation of an expression for the gel point in terms of
extents of reaction follows the derivation in section 4, except that
account is taken of the opportunities for intramolecular reaction.
The derivation may be considered to be a development of
Ahmed-Rolfes-Stepto (ARS) theory.22 The use of the different
states of the diamine unit specified in Figure 3 to define
opportunities for intramolecular reaction, rather than just a
simplified linear sequence of branch units, such as that shown in
Figure 7, means that more ring structures are accounted for.
As in the derivation of eq 38 in the absence of intramolecular

reaction, an expression forγ, the number of continuing paths
from a randomly chosen group to a statistically equivalent point
is required. γ is still given formally by eq 35, with γa and γb the
number of continuing paths, given that an A group and B group,
respectively, has been chosen. As in the absence of intramolecular
reaction, assume f irst that an A group has been chosen. The
opportunities for intramolecular reaction will depend on the
state of the diamine unit to which the chosen A group belongs
and the steps in the derivation of the expression for γa generally
follow those that led to eq 14. However, because Figure 6 shows
that unequal reactivity has a minimal effect on the relationship
between pHR and γ, it is permissible to assume the equal reactivity
of A groups when considering the probabilities of intramolecular
reaction. This assumption greatly simplifies the probability
considerations required. When more distant groups are considered
for ring formation, it is necessary to include some topological effect
as well as statistical probability of the groupmeeting. In addition, for
the irreversible reactions, a kinetic development might be more
appropriate than statistical considerations.
First, let the randomly chosen A group, namely, A1, belong to an

RA4 unit in state 2, as illustrated in Figure 8. As in eq 14,
3/4X2 is

the probability that an unreacted A group on state 2 is chosen.
In the absence of intramolecular reaction, this probability is
multiplied by pb to give the probability

3/4X2pb that the group A
1′,

which is statistically equivalent to A1, is reached. Accounting
for intramolecular reaction, the probability that the left-hand B
group reacts intermolecularly with A1′, rather than intra-
molecularly with the unreacted A groups on the unit bearing
A1, may be written pb(1 − λa2), where

λ =
+
P

c P
3

3a2
ab

a,ext ab (49)

λa2 is equivalent to λa of eq 39 for the case of state 2 being the
molecule under consideration, i.e.,

λ =
+

=
− +

c

c c
P

c p P
3

(1 ) 3a2
a2,int

a,ext a2,int

ab

a0 a ab (50)

with ca2,int = 3Pab, accounting for the three A groups able to
react intramolecularly with the left-hand B group, and ca,ext =
ca0(1 − pa) being the instantaneous concentration of unreacted
A groups in the polymerization. Pab is as defined in eq 45. Thus,
the probability that the group A1′ is reached from A1 is

λ−X p
3
4

(1 )2 b a2 (51)

Next, assume that the randomly chosen A group belongs to an RA4
unit in state 3. This occurs with probability equal to X3. There is a
probability of 1/2 that the A group chosen, namely, A1, is
unreacted, as shown in Figure 9a, giving two possible continuing

paths to R′B2 units. Select one of them, denoted A2. There is a
probability (1 − pb) that the other reacted A group of state 3
leads to an unreacted B group, B1, as illustrated in Figure 9b.
Hence, from eq 45, the internal concentration of B groups
around A2 available for intramolecular reaction is (1 − pb)Pab.
Alternatively, the other reacted A group of state 3 leads to a
reacted B group, B1, with probability pb. In that case, the infinite
number of possible structures that could be connected to B1 is
approximated by a continuing chain of branch units, as depicted
in Figure 9c. This structural approximation corresponds to that
used previously and enables approximations to internal
concentrations to be evaluated.13,18,22 Moving to the right of
B1, it can be seen that, at each RA4 unit of the continuing chain,
there is a probability ( fa− 2)pa(1− pb) that an unreacted B group
exists. As one moves right along the chain, the size of the ring
structure that can be formed by an unreacted B group reacting
with A2 increases and, following eq 46, the total internal
concentration from all such unreacted B groups is

Figure 8. Continuing path from A1, a randomly chosen unreacted A
group on an RA4 unit in state 2, to a statistically equivalent point, A1′.

Figure 9. (a) Possible continuing paths from A1, a randomly chosen
unreacted A group on an RA4 unit in state 3. (b) Occurrence of an
unreacted B group, B1, on an RA4 unit in state 3, giving the possibility of
A2 reacting intramolecularly to form a ring structure of the smallest size.
(c) Occurrence of a reacted B group, B1, on an RA4 unit in state 3, giving
the possibility of A2 reacting intramolecularly to form a ring structure of
any size larger than the smallest. (d) As structure c but A2 has reacted
intermoleculary with a B group and B2 can then react intermolecularly to
reach A1′, a statistically equivalent group to A1, or intramolecularly with
A group to form a ring structure of any size. ( fa is equal to 4.).
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ϕ− − −p f p p P( 2) (1 ) ( (1, 3/2) 1)b a a b ab

The last factor is (ϕ(1,3/2) − 1) because the smallest ring
structure can be formed only when B1 is unreacted.
Finally, summing the two contributions corresponding to B1

being unreacted and reacted, the total internal concentration of B
groups around A2 in state 3 of an RA4 unit is

ϕ

= − + − −

−

c P p p f p p[(1 ) ( 2) (1 )

( (1, 3/2) 1)]

b3,int ab b b a a b

(52)

and the probability that intramolecular reaction, rather than
intermolecular reaction, occurs is

λ =
+

=
− +

c

c c

c

c p c(1 )b3
b3,int

b,ext b3,int

b3,int

b0 b b3,int (53)

Conversely, the probability that A2 has reacted intermolecu-
larly with a B group is

λ−(1 )b3 (54)

This leads to the structure depicted in Figure 9d. Then, applying
to the reaction of B2 the preceding arguments regarding the
intramolecular versus intermolecular reaction of A2, one finds
that the total internal concentration of A groups around B2 is

ϕ

ϕ

= + − − −

= + − − −

c P p f p P

P p f p

2 ( 2)(1 ) ( (1, 3/2) 1)

[2 ( 2)(1 )( (1, 3/2) 1)]

a3,int ab b a a ab

ab b a a
(55)

The probability of intramolecular reaction rather than inter-
molecular reaction is

λ =
+

c

c ca3
a3,int

a,ext a3,int (56)

And the probability that B2 has reacted intermolecularly leading
to A1′, a statistically equivalent group to A1, is

λ−p (1 )b a3 (57)

Expressions 54 and 57 show that the total probability that A1′
is reached from A1, when A1 is an unreacted group on state 3, is

λ λ× − −X p
1
2

2 (1 ) (1 )3 b3 b a3 (58)

Now assume that A1, the randomly chosen A group on state 3, is a
reacted A group, giving one possible path through A2 to A1′. There
is a probability equal to 1/2 that A1 is reacted. The possible
resulting structures are depicted in Figure 10a. The R′B2 unit
attached to A1 ends in an unreacted B group with probability
(1 − pb) resulting in an internal concentration of B groups
around A2 of (1− pb)Pab. Conversely, it ends in a reacted B group
with probability pb, when it is assumed that the same structure as
depicted in Figure 9(c) exists, and the internal concentration of B
groups around A2 is

ϕ− − −p f p p P( 2) (1 ) ( (1, 3/2) 1)b a a b ab

Giving a total internal concentration of B groups of cb3,int the
same as that in eq 52 and a probability λb3, as in eq 53, that
intramolecular reaction occurs.
Proceeding left from A2 to an intermolecularly reacted B

group, with probability (1 − λb3), the other end of the R′B2 unit,
B2, is reacted with probability pb. Figure 10(b) shows that the
opportunities for the intramolecular reaction of B2 with an A

group are similar to those depicted in Figure 9(d), leading to a
probability λa3 of intramolecular reaction, as defined in eq 56.
Hence, (1 - λa3) is the probability that B

2 reacts intermolecularly,
leading to A1′, a statistically equivalent group to A1, and the
probability of passing fromA1, a reacted A group on state 3, to A1′ is

λ λ− −X p
1
2

(1 ) (1 )3 b3 b a3 (59)

Thus, adding expressions 58 and 59, the total contribution to γa
when an A group on state 3 is chosen, irrespective of it being
reacted or unreacted, becomes

λ λ− −X p
3
2

(1 ) (1 )3 b3 b a3 (60)

If the randomly chosen A group is on state 4, the same
probabilities ensue as when the group is on state 3. Hence, one
may formally write the contribution to γa as

λ λ− −X p
3
2

(1 ) (1 )4 b4 b a4 (61)

where λb4 = λb3 and λa4 = λa3.
Next assume that the randomly chosen A group is an unreacted A

group on state 5, giving three possible continuing paths, as
depicted in Figure 11a. An unreacted A group on state 5 is chosen
with a probability equal to 1/4. Let the A group on one of the
continuing paths be denoted A2. Figure 11a shows that this group
experiences an internal concentration of B groups

ϕ= − + − − −c p P p f p p P2(1 ) 2 ( 2) (1 ) ( (1, 3/2) 1)b5,int b ab b a a b ab

(62)

Figure 10. (a) Possible continuing paths from A1, a randomly chosen
reacted A group on an RA4 unit in state 3, showing both the occurrence
of an unreacted B group, B1, connected to A1, giving the possibility of A2

reacting intramolecularly to form a ring structure of the smallest size, and
the occurrence of a reacted B group, B1, giving the possibility of A2

reacting intramolecularly to form a ring structure of any size larger than
the smallest. (b) As structure (a) but A2 has reacted intermoleculary with
a B group and B2 can react intermolecularly to reach A1′, a statistically
equivalent group to A1, or intramolecularly with A group to form a ring
structure of any size.
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Thus, A2 reacts intramolecularly with B1 with a probability

λ =
+

c

c cb5
b5,int

b,ext b5,int (63)

and intermolecularly with a probability (1 − λb5). Also,
comparison with eq 52 shows that

=c c2b5,int b3,int (64)

The group B2 experiences an internal concentration of A
groups of Pab from A1 and

ϕ− − −p f p P2 ( 2)(1 ) ( (1, 3/2) 1)b a a ab

from unreacted A groups on the continuing sequences shown in
Figure 11a. Thus,

ϕ= − − − −c P p f p[1 2 ( 2)(1 )( (1, 3/2) 1)]a5,int ab b a a
(65)

and the probability that B2 reacts intramolecularly is

λ =
+

c

c ca5
a5,int

a,ext a5,int (66)

The probability that it reacts intermolecularly is (1 − λa5) and,
hence, the contribution to γa, when an unreacted A group on an
RA4 unit in state 5 is chosen, is

λ λ× − −X p
1
4

3 (1 ) (1 )5 b5 b a5 (67)

Now assume that the randomly chosen A group, A1, is a reacted A
group on an RA4 unit in state 5, giving two possible continuing

paths, as depicted in Figure 11b. A reacted A group is chosen with
a probability equal to 3/4. Again, considering the reaction of A2,
an A group in one of the continuing paths, Figure 11b shows that
the internal concentration of B groups around A2 is equal to cb5,int
of eq 62. Hence, the probability of intermolecular reaction of A2

is (1 − λb5), where λb5 is given by eq 63.
Considering the reaction of B2, the internal concentration of A

groups is equal to ca5,int of eq 65. Hence, the probability of
intermolecular reaction of B2 leading to A1′, a statistically
equivalent group to A1, is equal to (1 − λa5) with λa5 given by
eq 66. Finally, the contribution to γa, when a reacted A group on
state 5 is chosen, is

λ λ× − −X p
3
4

2 (1 ) (1 )5 b5 b a5 (68)

and, summing expressions 67 and 68, the total contribution to γa,
when a reacted or unreacted A group on an RA4 unit in state 5 is
chosen, is

λ λ− −X p
9
4

(1 ) (1 )5 b5 b a5 (69)

Finally, if the A group chosen, A1, is on state 6, all the arms are
equivalent to each other and there are three possible continuing
paths. Considering the reaction of A2 on one of these paths, it
experiences an internal concentration of B groups

ϕ

= − + − −

−

c p P p f p p P3(1 ) 3 ( 2) (1 )

( (1, 3/2) 1)

b6,int b ab b a a b ab

(70)

Thus, the probability of intermolecular reaction of A2 is (1− λb6),
where

λ =
+

c

c cb6
b6,int

b,ext b6,int (71)

Furthermore, comparison with eq 52 shows that

=c c3b6,int b3,int (72)

Turning to the reaction of B2, the internal concentration of A
groups is

ϕ= − − −c p f p P3 ( 2)(1 ) ( (1, 3/2) 1)a6,int b a a ab (73)

Thus, the probability of intermolecular reaction of B2 leading to
A1′, a statistically equivalent group to A1, is equal to (1 − λa6),
where λa6 is given by

λ =
+

c

c ca6
a6,int

a,ext a6,int (74)

The total contribution to γa when the randomly chosen A group
belongs to an RA4 unit in state 6 is

λ λ− −X p3 (1 ) (1 )6 b6 b a6 (75)

Summing the contributions to γa given in expressions 51, 60,
61, 69, and 75 gives

γ λ λ λ

λ λ λ λ

λ λ

= − + − −

+ − − + − −

+ − −

⎡
⎣⎢

⎤
⎦⎥

X X

X X

X p

3
4

(1 )
3
2

(1 )(1 )

3
2

(1 )(1 )
9
4

(1 )(1 )

3 (1 )(1 )

a 2 a2 3 b3 a3

4 b4 a4 5 b5 a5

6 b6 a6 b (76)

where, for i = 2−6

Figure 11. Possible continuing paths from A1, a randomly chosen (a)
unreacted or (b) reacted A group on an RA4 unit in state 5, showing both
the occurrence of an unreacted B group and a reacted B group, B1,
terminating an R′B2 unit attached to the RA4 unit, giving the possibility
of A2 reacting intramolecularly to form a ring structures of any size.
Alternatively, if A2 has reacted intermoleculary with a B group then B2

can react intermolecularly to reach A1′, a statistically equivalent group
to A1, or intramolecularly with an A group to form a ring structure of
any size.
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λ =
+

c

c ci
i

i
a

a ,int

a,ext a ,int (77)

with

=c P3a2,int ab

ϕ= + − − −c P p f p[2 ( 2)(1 )( (1, 3/2) 1)]a3,int ab b a a

=c ca4,int a3,int

ϕ= − − − −c P p f p[1 2 ( 2)(1 )( (1, 3/2) 1)]a5,int ab b a a

and

ϕ= × − − −c P p f p3 ( 2)(1 )( (1, 3/2) 1)a6,int ab b a a

and, for i = 3−6

λ =
+

c

c ci
i

i
b

b ,int

b,ext b ,int (78)

with

ϕ= − + − −c P p p f p(1 )[1 ( 2) ( (1, 3/2) 1)]b3,int ab b b a a

=c cb4,int b3,int

=c c2b5,int b3,int

=c c3b6,int b3,int

Returning to eq 35, it is now required to evaluate γb, the
number of continuing paths if a B group, B1, is randomly chosen.
B1 can be reacted or unreacted, as depicted in Figure 12. B2, the

other B group on the unit containing B1, is reacted with
probability pb. Assuming the usual linear structure attached to a
reacted B1 group, the internal concentration of A groups around
B2 is

ϕ= − −c p f p P( 2)(1 ) (1, 3/2)a,int b a a ab

and the contribution to γb is

λ−p (1 )b a (79)

where

λ =
+

c

c ca
a,int

a,ext a,int (80)

The RA4 unit that has reacted with group B2 can give a
continuing chain provided it is in state 3−6, as depicted in
Figure 12. The probability that an RA4 unit in state i is attached to
B2 is equal toQi, the probability of choosing a reacted A group on
state i. The expressions for Qi, i = 2−6, are

=
+ + + +

=

= = = =

Q
X

X X X X X
X

Q
X

Q
X

Q
X

Q
X

( 2 2 3 4 ) ()
;

2
()

;
2
()

;
3
()

;
4
()

2
2

2 3 4 5 6

2

3
3

4
4

5
5

6
6

(81)

As can be seen from Figure 3, the denominator in each case is the
total number of reacted A groups per unit. State 2 has only one
reacted A group and, hence, cannot give a chain continuing on
from group A2 in Figure 12.
If B2 in Figure 12 has reacted with an RA4 unit in state 3, there

is only one continuing path to B1′, that passing through A2 and
this A group experiences an internal concentration of B groups
equal to cb3,int of eq 52. Thus, the probability that A

2 has reacted
intermolecularly to reach B1′ and given a continuing chain is
(1− λb3), where λb3 is given by eq 53. Hence, the contribution to
γb when an RA4 unit in state 3 has reacted with B2 is

λ λ− −p Q(1 ) (1 )b a 3 b3 (82)

If the RA4 unit that has reacted with B
2 is in state 4, the same

opportunities for intramolecular reaction exist as for state 3;
cb4,int = cb3,int and λb4 = λb3. Also, the contribution to γb is

λ λ− −p Q(1 ) (1 )b a 4 b4 (83)

State 5 of an RA4 unit has three reacted groups. Hence,
reaction of B2 with an RA4 unit in state 5 gives two continuing
paths. One of these contains A2, which experiences an internal
concentration of B groups equal to cb5,int of eq 62. Hence, A2

reacts intermolecularly with B1′with probability (1− λb5), where
λb5 is given by eq 63 and gives a contribution to γb of

λ λ− −p Q(1 )2 (1 )b a 5 b5 (84)

Finally, intermolecular reaction of B2 with an RA4 unit in state
6 gives three continuing paths and A2 experiences an internal
concentration of B groups equal to cb6,int of eq 70. Hence, A2

reacts intermolecularly with B1′with probability (1− λb6), where
λb6 is given by eq 71 and gives a contribution to γb of

λ λ− −p Q(1 )3 (1 )b a 6 b6 (85)

Collecting the individual contributions to γb defined by
expressions 82 to 85 shows that

γ λ λ λ

λ λ

= − − + −

+ − + −

p Q Q

Q Q

(1 )[ (1 ) (1 )

2 (1 ) 3 (1 )]

bb b a 3 b3 4 4

5 b5 6 b6 (86)

The gel point is defined by γ in eq 35 equal to one, namely

γ γ γ= + =X X 1a a b b

with γa and γb given by eqs 76 and 86, respectively.

7. GEL POINT CALCULATIONS AND DISCUSSION
Calculations of extents of reaction at the gel point have been
carried out for reactions at equal initial concentrations of A and B

Figure 12. Possible continuing paths from B1, a randomly chosen
unreacted or reacted B group, leading through the intermolecular
reaction of B2 to A1, an A group on an RA4 unit in state 3−6. At least one
of the other A groups on the RA4 unit, namely, A

2, must be reacted. A2

can react intramolecularly to form a ring structure of any size or
intermolecularly to reach B1′, a statistically equivalent group to B1.
A(B...... signifies that an A group that can be reacted or unreacted. If
reacted, a structure the same as that attached to A1 is assumed to exist. If
the RA4 unit is in state 3 or state 4 then both the A groups are unreacted;
if it is in state 5 then one of the groups is reacted; and if it is in state 6 then
both groups are reacted.
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groups, i.e., ra = 1, giving ca0 = cb0 = c0, and using different values of
the ring-forming parameters of eq 48 with

λ λ λ= = =P c/a0 b0 ab 0 0 (87)

The value of λ0 is sufficient to allow the λai, λbi and λa of eqs 77, 78,
and 80 to be evaluated. Equation 50 shows that ca,ext = ca0(1− pa).
Similarly, cb,ext = cb0(1 − pb). Hence

λ
λ

λ
=

− +
=

− +
c c

p c c

c P

p c P

/

(1 ) /

( / )

(1 ) ( / )i
i

i

i

i
a

a ,int a0

a a ,int a0

a0 a ,int ab

a a0 a ,int ab

(88)

λ
λ

λ
=

− +
=

− +
c c

p c c

c P

p c P

/

(1 ) /

( / )

(1 ) ( / )i
i

i

i

i
b

b ,int b0

b b ,int b0

b0 b ,int ab

b b0 b ,int ab

(89)

and

λ
λ

λ
=

− +
=

− +
c c

p c c

c P

p c P

/

(1 ) /

( / )

(1 ) ( / )a
a,int a0

a a,int a0

a0 a,int ab

a a0 a,int ab

(90)

Inspection of eqs 77, 78, and 80 shows that the expressions for
cai,int, cbi,int, and ca,int all contain a factor Pab. Hence, the factors
(cai,int/ Pab), (cbi,int/ Pab) and (ca,int/ Pab) in eqs 88 to 90 are
independent of Pab and depend only on pa and pb. For example

ϕ= + − − −c P p f p/ 2 ( 2)(1 )( (1, 3/2) 1)a3,int ab b a a

As stated previously, the gel point is defined as the extent of
reaction pa (= pac) or pb (= pbc) that makes γ of eq 35 equal to 1,
with γa and γb given by eqs 76 and 86, respectively. pa and pb are
related through

= = =
p

p
X
X

c
c

rb

a

a

b

a0

b0
a

(91)

Equations 76, 81, 86 and 88−90 show that γa and γb are functions of
X2 toX6, pa, pb, λa0, and λb0. In addition, eqs 8 to 13 show thatX2 toX6
can be defined in terms of pH1, pH2, and pHR, allowing the effects of
unequal reactivity (ρ ≠ 1) to be accounted for using eqs 5 to 7.
Alternatively, eqs 16−20 can be used to evaluateX2 toX6 when ρ = 1.
Figure 13 shows the (critical) extent of reaction at gelation

(pc) versus λ0 for reaction mixtures with ra = 1. At the gel point

when ra = 1, pac = pbc = pc. Further, the value of pc when ρ = 1
and λ0 = 0 is 3−1/2 = 0.577, in agreement with Flory−
Stockmayer theory. Figure 13 again shows that pc is relatively

insensitive to changes in ρ (compare Figure 6). However, the
amount of intramolecular reaction and, hence, pc increase
markedly as λ0 increases, and, when λ0 = 0.073, the gel point
occurs only at complete reaction.
The present predictions of the gel point and its variation with

ring-forming parameter for ρ = 1 are compared in Figure 14 with

those given by ARS theory for RA4 + R′B2 polymerizations.
22,24

Here, αrc = αc - α
o
c is plotted versus λ0 for reaction mixtures with

ra = 1. αc = pacpbc and αo
c = poacp

o
bc, where p

o
ac and pobc are the

extents of reaction of A and B groups at gelation in the absence of
intramolecular reaction. According to Flory−Stockmayer theory,
αo

c = 1/3 and poac = pobc = 3−1/2 for RA4 + R′B2 polymerizations
with ra = 1. It can be seen that, using the present predictions,
significantly more ring structures are accounted for than when
using ARS theory. This improvement can be attributed to the
detailed consideration of the opportunities for intramolecular
reaction depicted in Figures 9−12, rather than, as in ARS theory,
just those predicted by linear sequences of branch units, such as
those shown in Figure 7 and the continuing arms in Figures 9
and 12. Moreover, comparison with ARS interpretations24 of
existing experimental data on the gel points of tetrafunctional
polyurethane-forming reactions shows that the present predictions
lie closer to the experimental gel points. Further interpretation of
published experimental data using the present theoretical predictions
will be the subject of future work. Meanwhile, the following paper
presents the measurements of gel points in polymerizations
involving POP diamines and DGEBA and the application of the
present theoretical interpretation to the results obtained.
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