
【演習問題レオ01】

下の図は、ある物質について体積と圧力の関係を示したものです。状態 I から状態 II まで圧縮する場合の圧縮率を $[Pa^{-1}]$ の単位で求めよ。1atm = $1.013 \times 10^5 \text{ N/m}^2$ とする。

【演習問題レオ02】

- (1) 系のエントロピーが増減する例を配列に関連づけて説明し、その例の中の配列が何かを示せ。
- (2) CGS 単位系 (cm, g, sec を用いた単位系のこと) で表した力の大きさの単位を dyne (ダイン と読む) で表記する。 $1N=10^5$ dyne となることを示せ。計算の過程がわかるように記せ。
- (3) $10 [dyne sec / cm^2] = 1 Pa sec となることを示せ。計算の過程がわかるように記せ。$

【演習問題レオ03】

- (1) ずり変形(せん断変形)を 2.2 図(テキスト p.9)のように表したとき、ずり速度(せん断速度)が 速度勾配に等しいことを説明せよ。
- (2) レオロジー的性質の分類(2.4 図、テキスト p.10)について特徴を述べよ。

【演習問題レオ04】

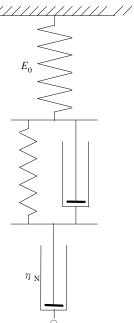
- (1) 日常的に見られる粘度の高い液体、および粘度の低い液体の例を挙げなさい。
- (2) 流動模型(2.10 図、テキストp.14)における活性化エネルギーの意味を説明しなさい。

【演習問題レオ05】

- (1) 自由体積とは何かを説明せよ。
- (2) 自由体積と粘度の関係を説明せよ。

【演習問題レオ06】

- (1) Maxwell 模型および Voigt 模型の応力—歪み関係の説明に沿って、"入力"と"出力"を用いた 短文を二つ作れ。
- (2) "刺激"と"応答"を用いた短文を二つ作れ。


【演習問題レオ07】

下の表は四要素模型に対して $\sigma_0=50 \text{ N/m}^2$ の応力でクリープ測定したときの、時間(t)と歪み (γ) の測定結果である。直列接続しているスプリングの弾性率 E_0 とダッシュポットの粘性率 η_N を求めよ。

右に示した図は四要素模型のモデル図である。

(表全体の参照には演習編のデータ・ファイル (PDF 文書) をダウンロード& オープンして下さい。)

t/s	γ (t)	t/s γ(t)		t/s	γ (t)	
0.1	6.33	2.1	15.36	4.1	19.45	
0.2	7.46	2.2	15.57	4.2	19.65	
0.3	8.42	2.3	15.79	4.3	19.85	

0.4	9.24	2.4	16	4.4	20.05
0.5	9.95	2.5	16.21	4.5	20.25
• • •	• • • •	• • • •	• • •	• • • •	• • • •
1.8	14.68	3.8	18.85	5.8	1.26
1.9	14.91	3.9	19.05	5.9	1.03
2	15.14	4	19.25	6	0.85

(注意!) Excel を使ってグラフ作成するときは、Adobe Reader でデータをコピーして Excel シート へペーストして下さい。ペーストした後 [データ]・[区切り位置] のメニューでデータを整頓しましょう。Excel 以外のソフトでもグラフソフトは色々あるのでトライしてみよう。

【演習問題レオ08】

下の表は $\omega=1$ rad/s で高分子水溶液の動的粘弾性測定をしたときの時間(t)、応力(σ)、歪み(γ)の測定結果である。

[1]

 $\sigma - t$ グラフ、 $\gamma - t$ グラフを作成し σ_0 , γ_0 を求めよ。 σ_0 , γ_0 はそれぞれ σ , γ の振幅である。(表全体の参照には演習編のデータ・ファイル(PDF 文書)をダウンロード&オーープンして下さい。)

- 191DY H	III - / /	, , , , , , , , , , , , ,	/ - / - /	C / /· 1 •	
time	stress	strain	time	stress	strain
S	Pa	%	S	Pa	%
0	0	0	5.3	-830.429	-83.0153
0.1	520.358	9.93394	5.5	-436.022	-70.3603
0.3	1102.72	29.3985	5.7	-39.0364	-54.9337
0.5	1487	47.6353	5.9	345.888	-37.2679
• • • •	• • • •	• • • •	• • • •	• • • •	
4.5	-1968.34	-97.6131	9.9	-1633.3	-45.5904
4.7	-1795.33	-99.8562	9.7	-1421.97	-27.0266
4.9	-1534.26	-98.1436	9.9	-1633.3	-45.5904
5.1	-1205.12	-92.5418			

※:注意:PDF文書内の数値をコピーペーストしてエクセル表およびグラフを作成することができます。ペーストした後は[データ]・[区切り位置]のメニューでデータを整頓してからグラフ作成しましょう。

[2]

 $\sigma \delta y$ 軸へ、 $\gamma \delta x$ 軸へとったグラフをつくり、楕円の図形が得られることを確かめよ。次式を用いて位相角 $\delta \delta$ を求めよ(A,B は楕円の長軸・短軸の長さ、X,Y は楕円に外接する長方形の辺の長さ)。

$$\sin \delta = \frac{AB}{XY}$$

[3]

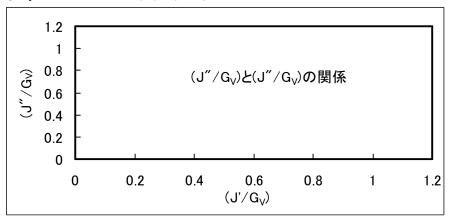
下に示した動的粘弾性の表式をつかい、この高分子水溶液のG', G''を求めよ。

$$G^* = \frac{\sigma_0}{\gamma_0}(\cos\delta - i\sin\delta) = G^{'} + iG^{''} \downarrow \gamma , \quad G^{'} = \frac{\sigma_0}{\gamma_0} \times \cos\delta \qquad G^{''} = \frac{\sigma_0}{\gamma_0} \times \sin\delta$$

【演習問題レオ09】

フォークト模型の複素コンプライアンスは実数部、虚数部それぞれが次式で書ける。

$$J'(\omega) = G_{V} \frac{1}{1 + (\omega \tau)^{2}}, \quad J''(\omega) = G_{V} \frac{\omega \tau}{1 + (\omega \tau)^{2}}$$


 G_V はフォークト模型のスプリング部分のバネ定数である。複素コンプライアンス $J^*(i\omega)$ は、 $J^*(i\omega)=J'(\omega)-iJ'(\omega)$ で表わされる。この $J'(\omega)$ 、 $J'(\omega)$ を複素平面表示すると半円のグラフが得られることを、下記[1],[2]の計算を通して確かめなさい。

[1] G_V=0.2, 3, 20, 150, 1200Pa として計算し、下の表をうめよ。

(表全体の参照には演習編のデータ・ファイル (PDF 文書)をダウンロード&オープンして下さい。)

G_{V}	,	0.2		3		20		150		1200	
(ωτ	()	J'/G _V	J"/G _V								
0.00)5										
0.0)1										
-	٠ -										
30	00										
50	00										

[2] (J'/G_V) をx軸へ, (J''/G_V) をy軸へとり G_V =0.2, 3, 20, 150, 1200Pa それぞれについてプロットせよ。

【演習問題レオ10】

M 模型の貯蔵弾性率、損失弾性率は次式で書ける。((6.37)式において、一般化された模型から単一 M 模型の G_i を G_M に書き換えた式である。) G_M は M 模型のスプリング部分のバネ定数である。

$$G' = G_M \bullet \frac{(\omega \tau)^2}{1 + (\omega \tau)^2}, \quad G'' = G_M \bullet \frac{\omega \tau}{1 + (\omega \tau)^2}$$

この貯蔵弾性率、損失弾性率を複素平面表示(コール・コール・プロットと言う)すると半円のグラフが得られることを、下記[1]-[3]の計算を通して確かめなさい。

[1] G_M =0.2, 3, 20, 150, 1200Pa として計算し、下の表をうめよ。(表全体の参照には演習編のデータ・ファイル (PDF 文書) をダウンロード&オープンして下さい。)

G_{M}	0.2		3		20		150		1200	
(ωτ)	G'	G"	G'	G"	G'	G"	G'	G"	G'	G"
0.005										
0.01										
• • • • •										
300										
500										

[2] 上の計算で得られた G', G''について G_M で叙して(G'/G_M), (G''/G_M) を求め、下の表をうめよ。 (表全体の参照には演習編のデータ・ファイル (PDF 文書) をダウンロード&オープンして下さい。)

G_{M}	0.2		3		20		150		1200	
(ωτ)	G'/G _M	G"/G _M								
0.005										
0.01										

300						
500						

[3] G_M =0.2, 3, 20, 150, 1200Pa それぞれについて(G'/G_M) をx軸へ, (G''/G_M)をy軸へとりプロットせよ。

【演習問題レオ11】

材料化学実験の第二部・7ゴム弾性のデータを用意して次の表を作成しなさい。

	1311103700000					/ C/17/20 C/1						
重りの	0		室温 1 (T ₁)		<u>'</u> 1)	温度 2 (T2)		・・ 温度 4 (T ₄)		4)		
個数	J	X_0 .	dL	λ	α / %	dL	λ	α/%	•	dL	λ	α / %
1												
2												
3												
4												
•••												
14												

ここで α は次式を使って計算しなさい; α =($L-L_0$)×100/ L_0 . さらに上表からfの値を内挿して下の表を完成させなさい。ただし α =100%におけるfと温度との関係から $(\frac{\partial f}{\partial T})_{\alpha,P}=c$ でcを求めよ。

α/%	f $(T_1 \circ \xi)$	f $(T_2 \circ \xi)$	<i>f</i> (T₃のとき)	<i>f</i> (T₄のとき)	$T_3 \times c$	$(\frac{\partial U}{\partial L})$
0						
30						
60						
90						
120						
150						
180						

 $(\partial U/\partial L)$ は $(\frac{\partial U}{\partial L})_{T,V} = f - T \times (\frac{\partial f}{\partial T})_{\alpha,P}$ の関係(マックスウェルの関係式と呼ばれる)から求めよ。以上の算出過程から得られる知見を述べよ。

【演習問題レオ12】

材料化学実験の第二部・4高分子フィルムの静的力学特性のデータを手元に用意して、①未延伸フィルム ②X 方向延伸 ③Y 方向延伸の各試料について歪み速度 $\dot{\gamma}$ を求めよ。さらに公称応力一時間のグラフを作成せよ。グラフの初期勾配をKと書くと、 $K=E\times\dot{\gamma}$ で表される。この関係を用いてEを求め、応力一歪み曲線から得た初期弾性率と比較しなさい。

【演習問題レオ13】

材料化学実験の第三部・11 高分子の粘性と弾性・粘弾性モデル実験において得られたバネ定数 k および粘性率 η の値を用いて、マックスウェル・モデルへ一定の $\dot{\gamma}$ で歪みを掛けたときの応力 σ の時間変化をグラフにして示しなさい。グラフ作成にあたり、 $\sigma(t)=\eta\dot{\gamma}(1-\exp(-t/\tau))$ を用いなさい(緩和時間は $\tau=\eta/k$ を示す)。 $\dot{\gamma}$ はダッシュポットの粘性率を求める際の値を用いてよい。

以上です。

《 演習問題の実施日と対象学生(予定) 》

	日付	解答 の作成	解答用紙 の提出	解答用紙	対 象 学生
【演習問題レオ01】	11月12日			TodaysWORK	
【演習問題レオ02】	11月19日	授業時間		TodaysWORK	
【演習問題レオ03】	12月03日	中に作成		TodaysWORK	
【演習問題レオ04】	12月17日	する。		TodaysWORK	
【演習問題レオ05】	12月24日	する。	授業時間 ・中に提出	TodaysWORK	全員
【演習問題レオ06】	01月07日			TodaysWORK	
【演習問題レオ07】	00月00日		して下さ		全員
【演習問題レオ08】			<i>V</i> ,		A班(※)
【演習問題レオ09】	01月21日		• 0		B班(※)
【演習問題レオ10】		課外時間		レポート用紙(※)	C班(※)
【演習問題レオ11】		に作成		1)11/15/(>>)	A班
【演習問題レオ12】	01月28日	する。			B班
【演習問題レオ13】					C班

- (※) レポート用紙 (パソコンからのプリントを含む) 提出の際に、必ず、次ページの表紙をプリントしてホチキスで綴じて下さい。問題番号、日付、氏名、学生番号の記入もれに注意。
- (※) 学生番号:1~28=A斑, 29~63=B斑, 64~その他=C斑として問題 08-13 を演習してください。

○ ここにパンチで穴をあける ○

【演習問題レオ】の表紙

【演習問題レオ 】

○ 月 日 番号(二桁): 氏名

----< きりとりせん >--

○ ここにパンチで穴をあける ○

【演習問題レオ】の表紙

【演習問題レオ

○ 月 日 番号(二桁): 氏名

____< きりとりせん >-----

○ ここにパンチで穴をあける ○

《web からゲットした版》

【演習問題レオ01】のシート

○ 月 日 番号(二桁):

○ ここにパンチで穴をあける ○

《web からゲットした版》

【演習問題レオ02】のシート

○ 月 日 番号(二桁):

○ ここにパンチで穴をあける ○

《web からゲットした版》

|【演習問題レオ03】のシート

○ 月 日 番号(二桁):

―――< きりとりせん >

○ ここにパンチで穴をあける ○

《web からゲットした版》

【演習問題レオ04】のシート

○ 月 日 番号(二桁): 氏名

○ ここにパンチで穴をあける ○

《web からゲットした版》

【演習問題レオ05】のシート

○ 月 日 番号(二桁):

――――< きりとりせん >

○ ここにパンチで穴をあける ○

《web からゲットした版》

【演習問題レオ06】のシート

○ 月 日 番号(二桁):